Computation of Successive Derivatives of $f(z) / z^{*}$

By Walter Gautschi \dagger

1. Introduction. It is sometimes necessary to calculate derivatives of the form

$$
\begin{equation*}
d_{n}(z)=\frac{d^{n}}{d z^{n}}\left(\frac{f(z)}{z}\right) \quad(n=0,1,2, \cdots) \tag{1.1}
\end{equation*}
$$

where f is a function whose derivatives can be formed readily. Analytic differentiation in (1.1), while elementary, is obviously tedious, and the resulting expressions are of doubtful practical value. In the following we present a simple and effective recursive algorithm to generate these derivatives. As an example, we consider the cases where $f(z)=e^{z}, f(z)=\cos z$, and $f(z)=\sin z$.

Our main observation may be paraphrased in the following surprising way. The calculation of a large number of derivatives (1.1) at a fixed point z is a stable process if the function $g(\zeta)=f(\zeta) / \zeta$ has a pole at $\zeta=0$, and an unstable process if $g(\zeta)$ is regular at $\zeta=0$.
2. The Recurrence Relation. Let $z \neq 0$ be arbitrary complex, and let $f(\zeta)$ be analytic in the circle $|\zeta-z| \leqq r, r>|z|$, which includes the origin $\zeta=0$. Our point of departure is the identity

$$
\frac{f(z)-f(0)}{z}=\int_{0}^{1} f^{\prime}(t z) d t .
$$

Differentiating n times gives

$$
\begin{equation*}
d_{n}(z)-(-1)^{n} \frac{n!}{z^{n+1}} f(0)=\int_{0}^{1} t^{n} f^{(n+1)}(t z) d t \tag{2.1}
\end{equation*}
$$

Denoting the integral on the right by I_{n}, integration by parts yields

$$
I_{n}+\frac{n}{z} I_{n-1}=\frac{f^{(n)}(z)}{z}
$$

hence, together with (2.1), the recurrence relation

$$
\begin{equation*}
d_{n}(z)+\frac{n}{z} d_{n-1}(z)=\frac{f^{(n)}(z)}{z} \quad(n=1,2,3, \cdots) \tag{2.2}
\end{equation*}
$$

We note that (2.2) represents a linear inhomogeneous first-order difference equation for d_{n}. Computational aspects of such difference equations were discussed at length in [1]. It was noted there, that a naive application of (2.2) in the forward direction is accompanied by an undesirable build-up of rounding errors whenever the quantity

$$
\rho_{n}=\frac{d_{0} h_{n}}{d_{n}}
$$

[^0]becomes large in absolute value for some n. Here, h_{n} denotes the solution (normalized by $h_{0}=1$) of the homogeneous difference equation that corresponds to (2.2), i.e.
$$
h_{n}=(-1)^{n} \frac{n!}{z^{n}} .
$$

Numerical instability is particularly prominent if $\lim _{n \rightarrow \infty}\left|\rho_{n}\right|=\infty$, or, equivalently, if

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{d_{n}}{h_{n}}=0 . \tag{2.3}
\end{equation*}
$$

By (2.1) we have

$$
\begin{equation*}
z \frac{d_{n}}{h_{n}}=f(0)+(-1)^{n} \frac{z^{n+1}}{n!} \int_{0}^{1} t^{n} f^{(n+1)}(t z) d t \tag{2.4}
\end{equation*}
$$

The second term on the right, disregarding the sign, we recognize as being the nth remainder (in integral form) of the Taylor expansion of $f(0)$ about z. Because of the analyticity assumption made at the beginning of this section, this remainder tends to zero, as $n \rightarrow \infty$, and so

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{d_{n}}{h_{n}}=\frac{f(0)}{z} . \tag{2.5}
\end{equation*}
$$

In particular, if $f(0)=0$, then (2.3) holds, and we have numerical instability. On the other hand, if $f(0) \neq 0$, then

$$
\lim _{n \rightarrow \infty} \rho_{n}=\frac{f(z)}{f(0)}
$$

and $\left|\rho_{n}\right|$ is bounded for all n, provided $d_{n}(z)$ does not vanish for some n. Hence, no serious numerical difficulties should attend the use of (2.2), unless $|f(z) / f(0)|$ is very large, or $\left|\rho_{n}\right|$ reaches a large peak prior to converging to the limiting value $|f(z) / f(0)|$.

An alternate proof of (2.5) can be given using Cauchy's formula for the nth derivative of an analytic function,

$$
d_{n}(z)=\frac{n!}{2 \pi i} \oint_{c} \frac{f(\zeta) d \zeta}{(\zeta-z)^{n+1} \zeta}
$$

If $f(0)=0$, we may take for C a circle about z containing the origin and contained in the circle of analyticity of f. If $f(0) \neq 0$, we must add to C a small contour C_{0} encircling the origin in the negative direction. Taking for C_{0} a small circle, and letting its radius tend to zero, we arrive at

$$
d_{n}(z)=(-1)^{n} \frac{n!}{z^{n+1}} f(0)+\frac{n!}{2 \pi i} \oint_{C} \frac{f(\zeta) d \zeta}{(\zeta-z)^{n+1} \zeta}
$$

Hence,

$$
\begin{equation*}
z \frac{d_{n}}{\bar{h}_{n}}=f(0)+\frac{(-1)^{n}}{2 \pi i} \oint_{C}\left(\frac{z}{\zeta-z}\right)^{n+1} \frac{f(\zeta)}{\zeta} d \zeta \tag{2.6}
\end{equation*}
$$

Since $f(\zeta) / \zeta$ is bounded on C, and

$$
\left|\frac{z}{\zeta-z}\right| \leqq q<1
$$

it is clear that the integral in (2.6) tends to zero, as $n \rightarrow \infty$, and so we again obtain (2.5).

We may summarize as follows: Lel f be analytic in a circle about z which includes the origin in its interior. Then the generation of a large number of derivatives (1.1), using forward recursion by (2.2), is in general numerically stable if $f(0) \neq 0$, but highly unstable if $f(0)=0$.

We observe, however, that forward recursion by (2.2), even in the case $f(0)=0$, may still be adequate, if only a relatively small number of derivatives are required. In fact, the recursion should be adequate as long as $n \leqq|z|$.
3. Recursive Algorithm in the Case $f(0)=0$. We take advantage of a remark made on p. 25 of [1]. Since $\left|\rho_{n}\right| \rightarrow \infty$, we may apply the recursion,(2.2) in the backward direction, starting with $n=\nu$ sufficiently large, and using zero initial value,

$$
\begin{equation*}
d_{n-1}^{[\nu]}=\left(f^{(n)}(z)-z d_{n}^{[\nu]}\right) / n \quad(n=\nu, \nu-1, \cdots, 1), \quad d_{\nu}{ }^{[\nu]}=0 \tag{3.1}
\end{equation*}
$$

Then, for $n \geqq 0$ in any bounded set, we will have

$$
d_{n}{ }^{[\nu]} \rightarrow d_{n} \quad \text { as } \quad \nu \rightarrow \infty
$$

Moreover, the relative error of ${d_{n}}^{[\nu]}$ is given by

$$
\begin{equation*}
\frac{d_{n}{ }^{[\nu]}-d_{n}}{d_{n}}=\frac{\rho_{n}}{\rho_{\nu}} \tag{3.2}
\end{equation*}
$$

It remains to estimate a reasonable starting value ν for n, given, say, that the results for $n=0,1,2, \cdots, N$ are to be accurate to S significant digits. According to (3.2), we must require that $\left|\rho_{n} / \rho_{\nu}\right| \leqq \epsilon$ for all $0 \leqq n \leqq N$, where

$$
\epsilon=\frac{1}{2} 10^{-S}
$$

that is,

$$
\begin{equation*}
\frac{n!}{\nu!}|z|^{\nu-n}\left|\frac{d_{\nu}}{d_{n}}\right| \leqq \epsilon \quad(n=0,1,2, \cdots, N) \tag{3.3}
\end{equation*}
$$

In addition to the analyticity assumption introduced earlier, we now assume that $f^{(n)}$ is uniformly bounded, and bounded away from zero on the segment from 0 to z as $n \rightarrow \infty$. Then it is clear from (2.1), where now $f(0)=0$, that $\left|d_{\nu} / d_{n}\right|<1$ for ν sufficiently large. Hence, it appears reasonable to replace $\left|d_{\nu} / d_{n}\right|$ in (3.3) by 1 , and to require

$$
\begin{equation*}
\frac{n!}{\nu!}|z|^{\nu-n} \leqq \epsilon \quad(n=0,1,2, \cdots, N) \tag{3.4}
\end{equation*}
$$

Denote the expression on the left by p_{n}. Clearly, $\left\{p_{n}\right\}$ is a sequence of positive numbers which initially decrease, until n is near $|z|$, and from then on increase rapidly to ∞. (The case $|z|<1$, in which p_{n} increases from the beginning, is of

Figure 1. Behavior of $p_{n}=n!|z|-n / \nu!$
little consequence for the following.) Denote by n_{0} the integer $n>0$ for which p_{n} is near to p_{0} "for the second time" (see Figure 1), hence $|z|^{n} / n!$ near 1. Then, (3.4) is implied by $p_{0} \leqq \epsilon$, if $N \leqq n_{0}$, and by $p_{N} \leqq \epsilon$ if $N>n_{0}$. We may replace (3.4) therefore by

$$
\frac{|z|^{\nu}}{\nu!} \leqq \epsilon \quad\left(N \leqq n_{0}\right), \quad \frac{N!}{\nu!}|z|^{\nu-N} \leqq \epsilon \quad\left(N>n_{0}\right) .
$$

Using Stirling's formula, these conditions are adequately approximated by

$$
\left(\frac{e|z|}{\nu}\right)^{\nu} \leqq \epsilon \quad\left(N \leqq n_{0}\right), \quad\left(\frac{e|z|}{\nu}\right)^{\nu}\left(\frac{N}{e|z|}\right)^{N} \leqq \epsilon \quad\left(N>n_{0}\right) .
$$

We note, incidentally, that again by Stirling's formula,

$$
n_{0} \approx[e|z|], \quad e=2.71828 \cdots
$$

The first inequality, upon taking logarithms, can be written in the form

$$
\begin{equation*}
\frac{\nu}{e|z|} \ln \left(\frac{\nu}{e|z|}\right) \geqq \frac{s}{e|z|} \tag{3.5}
\end{equation*}
$$

where

$$
s=S \ln 10+\ln 2 .
$$

Similarly, the second inequality amounts to

$$
\nu \ln \left(\frac{\nu}{e|z|}\right)-N \ln \left(\frac{N}{e|z|}\right) \geqq s
$$

which can be written in the form

$$
\begin{equation*}
\left(\frac{\nu}{N}-1\right) \ln \left(\frac{N}{e|z|}\right)+\frac{\nu}{\bar{N}} \ln \frac{\nu}{N} \geqq \frac{s}{N} \tag{3.6}
\end{equation*}
$$

Since certainly $\nu>N$, and moreover $N \geqq e|z|$ (N now being larger than n_{0}, and $n_{0} \approx e|z|$, the first term on the left is $\geqq 0$. Hence, (3.6) will be satisfied if we require

$$
\begin{equation*}
\frac{\nu}{N} \ln \frac{\nu}{N} \geqq \frac{s}{\bar{N}} \tag{3.7}
\end{equation*}
$$

Both conditions (3.5), (3.7) now have the form $t \ln t \geqq c$. Denoting by $t(y)$ the inverse function of $y=t \ln t(t \geqq 1)$, we obtain our final estimate of ν in the form

$$
\begin{equation*}
\nu \geqq e|z| t\left(\frac{s}{e|z|}\right) \quad\left(N \leqq n_{0}\right), \quad \nu \geqq N t\left(\frac{s}{N}\right) \quad\left(N>n_{0}\right) \tag{3.8}
\end{equation*}
$$

We note that in (3.8) the function $t(y)$ need only be available to low accuracy. Formulas giving 1% accuracy, or better, may be found in [2].

The algorithm just described may still be unsatisfactory, numerically, if $|z|$ is relatively large. The recursion (3.1) then is likely to suffer from loss of accuracy, due to cancellation of digits, particularly for n near 1 . For such n, indeed, z / n in (3.1) will have large absolute value, yet $d_{n-1}^{[\nu]}$ has normally the same order of magnitude as $d_{n}{ }^{[\nu]}$. The difficulty may be resolved by applying (2.2) in forward direction as long as $n \leqq|z|$, and using the backward recurrence algorithm described above for the remaining n with $|z|<n \leqq N$.
4. Examples. Consider first $f(z)=e^{z}$, and let

$$
d_{n}(z)=\frac{d^{n}}{d z^{n}}\left(\frac{e^{z}}{z}\right)
$$

Then (2.2) gives immediately

$$
\begin{equation*}
d_{n}(z)+\frac{n}{z} d_{n-1}(z)=\frac{e^{z}}{z} \quad(n=1,2,3, \cdots) \tag{4.1}
\end{equation*}
$$

Our theory of Sections 2 and 3 clearly applies. Since $f(0)=1$, it follows that (4.1) is numerically stable in the forward direction. We note, incidentally, that

$$
\begin{equation*}
d_{n}(z)=(-1)^{n} \frac{n!}{z^{n+1}} e^{z} e_{n}(-z) \tag{4.2}
\end{equation*}
$$

where

$$
\begin{equation*}
e_{n}(z)=\sum_{k=0}^{n} \frac{z^{k}}{k!} \tag{4.3}
\end{equation*}
$$

is the nth partial sum of the exponential series.
Likewise, if $f(z)=\cos z$, and

$$
c_{n}(z)=\frac{d^{n}}{d z^{n}}\left(\frac{\cos z}{z}\right)
$$

we obtain

$$
\begin{equation*}
c_{n}(z)+\frac{n}{z} c_{n-1}(z)=\tau_{n}(z) \quad(n=1,2,3, \cdots) \tag{4.4}
\end{equation*}
$$

where $\left\{\tau_{n}(z)\right\}_{n=1}^{\infty}=\{-\sin z,-\cos z, \sin z, \cos z, \cdots\}$. Like the previous recursion, (4.4) is numerically stable. On the other hand, if $f(z)=\sin z$, and

$$
s_{n}(z)=\frac{d^{n}}{d z^{n}}\left(\frac{\sin z}{z}\right)
$$

then

$$
\begin{equation*}
s_{n}(z)+\frac{n}{z} s_{n-1}(z)=\sigma_{n}(z) \quad(n=1,2,3, \cdots) \tag{4.5}
\end{equation*}
$$

$\left\{\sigma_{n}(z)\right\}_{n=1}^{\infty}=\{\cos z,-\sin z,-\cos z, \sin z, \cdots\}$, is numerically unstable, and the algorithm of Section 3 should be applied, including the device mentioned at the end of Section 3.

In terms of (4.3), we may also write

$$
\begin{aligned}
& c_{n}(z)=\frac{(-1)^{n} n!}{2 z^{n+1}}\left[e^{i z} e_{n}(-i z)+e^{-i z} e_{n}(i z)\right], \\
& s_{n}(z)=\frac{(-1)^{n} n!}{2 i z^{n+1}}\left[e^{i z} e_{n}(-i z)-e^{-i z} e_{n}(i z)\right],
\end{aligned}
$$

as follows readily from (4.2) and Euler's formula.
The functions $s_{n}(x)$ have found wide applications in diffraction theory, and are extensively tabulated (see [4]). The generation of d_{n}, c_{n}, and s_{n}, may also be useful for the analytic continuation of the exponential-, cosine-, and sine-integrals, respectively. ALGOL procedures generating $d_{n}(x), c_{n}(x)$, and $s_{n}(x)$ for real x may be found in [3].

Argonne National Laboratory

Argonne, Illinois

1. W. Gautschi, "Recursive computation of certain integrals," J. Assoc. Comput. Mach., v. 8, 1961, pp. 21-40.
2. W. Gautschi, "Algorithm 236-Bessel functions of the first kind," Comm. Assoc. Comput. Mach., v. 7, 1964, pp. 479-480.
3. W. GAUTSCHI, "Algorithm 282-derivatives of $e^{x} / x, \cos (x) / x$, and $\sin (x) / x$, " Comm. Assoc. Comput. Mach. (v.9, 1966.)
4. Tables of the Function $(\sin \phi) / \phi$ and of its First Eleven Derivatives, The Annals of the Computation Laboratory of Harvard University, Harvard Univ. Press, Cambridge, Mass., 1949. MR 11, 692.

[^0]: Received September 10, 1965.

 * Work performed under the auspices of the U. S. Atomic Energy Commission.
 \dagger Present address: Purdue University.

